If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7v^2+20v-3=0
a = 7; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·7·(-3)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-22}{2*7}=\frac{-42}{14} =-3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+22}{2*7}=\frac{2}{14} =1/7 $
| 33s+81=180 | | 27-2w=7w | | x/4=5.3 | | 3x+8+5x-26=180 | | 8u-20=180 | | r/12=9 | | 5(x+1)=2(x-3) | | 2(2x+2)=9-3 | | 4(x-2)-5=3x-6 | | 5u+100=180 | | 3(3u-16)=18 | | (w-6)^2=2w^2-16w+39 | | 21k+19=28k+12 | | 60x=110 | | 9x-15+11x+15=90 | | 3+5x-4-7x=3x-4x+1 | | 8t-7=65 | | y=-3^2-7+ | | 4-(9g-5)=-15 | | 3x+$/2=9.5 | | 4(x-2)=7x-14 | | 11x-17+4x-9=180 | | b=1-3b+-4+6b-7b | | 16−3p=3/2p+5 | | (5x-6)/7=7 | | 16-3p=0.6666666667p+5 | | 8q-8=78 | | -155=5(1+3v) | | 2x-3=2x+9 | | -155=(1+3v)5 | | -0.4w+7.3=4.2 | | -155=(1+3v) |